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SUMMARY

Experimental results are presented for transonic flow past cone-
cylinder, axially symmetrle bodies. The drag coefficient and surface
Mach number are studied as the free-stream Mach number i1s varied and,
vherever possible, the experimental results are compared with theoret-
ical predictions. Interferometric results for several typical flow
configurations are shown and an example of shock-free supersonic-to-
subsonic compression is experimentally demonstrated.

The theoretical problem of transonic flow past finite cones is dis-
cussed briefly and an spproximste solution of the axially symmetric
transonic equations, valid for a semi-infinite cone, is presented.

INTRODUCTION

Transonic flow past certain two-dimensional bodies has been the sub-
ject of several recent papers and the phenomens are well understocod. The
theoretical results of Cole (ref. 1), Guderley and Yoshihara (ref. 2),
Vincenti and Wagoner (ref. 3), and others apply to two-dimensional sym-
metrical double-wedge airfoils. The experimental results of Bryson
(ref. 4) and Griffith (ref. 5) substantiate the theoretical work in a
very satisfactory manner. More recently, Vincenti and Wagoner (ref. 6)
and Guderley and Yoshihars (ref. 7) have analyzed the transonic flow
past two-dimensional unsymmetricsl sections, that is, lifting double-
wedge alrfoils. Current experiments on 1lifting double-wedge airfoils
(ref. 8) at the Guggenheim Aeronautical Laboratory of the California
Institute of Technology indicate that asgreement between theoretical and
experimental results will again be obtained.

Two-dimensional and axially symmetric transonic flows are of con-
siderable theoretical and practical Interest since these two specialized
problems are limiting cases of the more complex problem of the flow about
an arbitrary three-dimensional body.

The study of axially symmetric transonic flow is not so complete as
that of two-dimensional flow. In recent years several papers, notably
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those of Von Kdrmdn (ref. 9) and Oswatitsch and Berndt (ref. 10), have
studied the similarity rules of exially symmetric transonic flow. Also,
Yoshihara (ref. 11) has calculated the flow about a finite cone at a
free-stream Mach number of 1 by a relexation technique and has obtained
some experimental verificatlion of the theoretical result. The hodograph
problem for generasl transonic flow past finite cones is discussed in
reference 8. However, theoretical solutions or experimental results for
the complete transcnic regime are not, at present, avallasble. The pres-
ent pesper presents the results of an experimental investigation of the
transonic flow past cone-cylinder bodies. A conical tip followed by s
cylindrical afterbody was chosen as the experimental model for two pri-
mary reagsons: (1) The relatively simple geometry of a cone~cylinder
body may simplify the theoretical problem, and (2) viscous effects are
minimized; that is, the boundary layer on the cone surface is in a
reglon of decreasing or constant pressure so that the presence of the
boundary layer will not greatly alter the shape of the body forward of
the cone shoulder.

Theoretical results for the supersonic flow past a cone were first
presented in 1929 by Busemenn (ref. 12). Busemamn's solution postulates
a semi-infinite come and assumes that the flow is conical; that is,
along rays through the apex of the semi-infinite cone, the flow parame-
ters such as pressure and velocity are constant. The solution is found
by a geometrical construction in the hodograph plane and it is readily
apparent that a conical solution exists only so long as a shock wave is
attached to the cone spex and, therefore, the free-stream Mach number
is supersonic. It is interesting to note that Busemann's golution pre-
dicts smooth shock-free compression from supersonic to subsonic flow
for particular combinations of cone angle and free-stream Mach number.
The conical solution also shows that for a glven cone angle and free-
stream Mach number M, the surface Mach number is always less than the

Mach number immedlately behind the conical shock wave; as M, decreases,
the surface Mach number decreases and eventuaslly passes from supersonic
to subgonic values. As was mentioned by Busemenn, the conical solution
for a semi-infinite cone is completely valid for a finite cone so long
as the flow is everywhere supersonic, but when the surface Mach number
is less than sonic the perturbation due to the corner or shoulder of the
finite cone 1s propagated forward through the subsonic portion of the
field destroying the conicity of the flow. Thus, the Busemann solution
1s completely valid for a finite cone only so long as M, is large
enough 8o that the surface Mach number is grester than sonic.

Taylor and Maccoll (ref. 13) in 1933 présénted the results of a
numerical integration of the axlally symmetric equations of motion for
conicael flow about semi-infinite cones and alsc presented experimental
verification of their theoretical results. Further experimental veri-
fication by Maccoll (ref. 1%) was published in 1937. Both of the above
papers noted that deviations of the experiments from the theoretical
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predictions, notably in the shape of the shock wave, are gpparent when
the surface Mach number is subsonic.

As was mentioned previously, Yoshihara (ref. 11) has computed, by
relaxation methods, the flow about & cone cylinder at M, = 1.00 and
has experimentally verified the calculation. However, theoretical solu-
tions do not exist for the complete transonic regime.  Solutions have
not been developed for the flow past a finite cone when M, is subsonic
or when My 1is between sonic and the value of M, at which Busemann's
conical solution becomes valid. Drougge (ref. 15) has computed the flow
Tield between a detached shock wave and a finite cone by relaxation
methods; however, the position and shape of the detached shock wave were
determined initially from schlieren photographs.

The experimental resulis reported in this paper cover several inter-
esting features of the transonic flow about finite cones. The devia-
tions of the surface Mach number from the values predicted by conical
theory are examined for values of M, such that the flow field is tran-
gonic in nature. The behavior of the surface Mach number for subsonic
values of My, and as M, approaches sonic from subsonic values, is
examined in some detall so that an extrapolation to M, = 1.00 may be
made. The above surface Mach number data lead naturally to the evalua-
tion of the drag coefficient, and experimental values of the drag coef-
ficient in the transonic regime are presented.

The physical location of the sonic line in a meridional plane of
the flow about a finite cone is of considerable interest for s theoreti-
cal study of the problem of axislly symmetric flow. With this fact in
mind, an interferometric analysis was made at several typical values
of My 80 as to determine the local Mach number fields about finite
cones. Several examples of supersonic to subsonic shock-free compres-
sion are experimentally demonstrated.

Experimental values of the shock-wave angle at the cone tip, par-~
ticularly at values of M, where the flow field between the shock wave
and the cone surface is transonic or subsonic 1n nature, are presented,
and a comparison with the values from conical theory is shown.

The conical solution for flow about & semi-~infinite cone demonstrates
that a conical solution does not exist if, for a given cone angle,
M, decreases below a certain minimm M,. This minimum M, is defined
to be the M, for which shock-wave detachment occurs for a semi-infinite
cone. Whether or not the shock-wave-detachment Mach number for a finite
cone can be determined from conical theory is of considerable theoretical
interest. Experimental values of the detackment distance of a shock wave
from a finite cone tip, the distance obviously béing zero at attachment,
have been collected from several sources and the results snslyzed in this
report.
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The transonic equations of motion and boundary conditions es derived
by Von Kérmén (ref. 9) for axlally symmetric flow require several assump-
tions as to the relative magnitude of various terms in the exact equations
of motion and the related boundary conditions. To demonstrate that the
transonic equations retain the important features of the exact equations,
an approximate solution of the problem of conlcal flow about a semi-
infinite cone has been developed employing the transonic equations and
boundary conditions. A comparison of the exact Busemann solution and the
approximate transonic solution is presented in the report.

The author of this report wishes to express his sppreciation for
their helpful advice and criticism to Drs. H. W. Liepmann, J. D. Cole,
and A. Roghko of the California Institute of Technology. The investi-
gation was conducted under the sponsorship and with the financigl assis-
tance of the Natlional Advisory Committee for Aeronsutics.

SYMBOLS
Aki=[(k+1)2-12-V1?-12
2k + 1

a¥ velocity of sound for M, = 1.00
b width of increments of region of integration
Cp cone drag coefflcient; reference area is cone base area
CD* drag coefficient at My, = 1.00
CP pressure coefficlent, —£i§-<£5 - )

Me® \Poo
Cp* pressure coeffieient at M, = 1.00
c chord of cone
a cone base diameter
i,k integers
1 path length
My cone-surface Mach number
M free-stream Mach number
M Mach number lmmedistely downstream of a shock wave

SwW
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N number of outermost increment of region of integration

n index of refraction of air

Po stagnation pressure

Dg surface gtatic pressure

Py free-stream static pressure

dy> Oy velocities in axial and radial directions, respectively

r raedial distance from axis of symmetry to point on light path

Ty cone base redius

S interfer;metric fringe shift

u nondimensional transonic axial-veloclty perturbation in
gppendix C; y2 in eppendix B

ug = yg2

v nondimensional transonic radial-velocity perturbgtion in
appendix C; r2 in appendix B

Vo v on surface of body

w = r2

X axlal distance downstream of cone +tip

N perpendicular distance from axis of symmetry to light path

B .shock-wave angle

Bwn shock-wave angle at cone tip

4 ratio of specific heats of air, 1.400

5 axial distance from cone shoulder to shock wave

§ = M

n=r/x
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Mg tangent of shock-wave angle

n = y/x

6 cone semiangle

Kk Gladstone-~Dele constant

Mo wave length in Qacuum of light employed
£ = M2

p density of air

p(1) density of undetermined medium
pR density of reference medium

P, free-stream density

o= x/r

@ perturbation potential

EXPERTMENTAL EQUIPMENT

Wind Tunnel

The transonic wind tunnel at GALCIT is a continuous-flow wind tunnel.
For supersonic testing, the test-section Mach number msy be continuously
varied over a wide range by altering the shape of one flexible wall. The
test~gsection Mach number is varled by changlng the area of a sonlic throat
downstream of the test section when subsonic tests are belng performed..
The test-section width is 4 inches and the height is 9 inches. The design
of the flexible test-section wall is discussed in reference 16.

Interferometer

The interferometer used in the present lnvestigation is of the Mach-
Zehnder type. Both light paths of the interferometer are passed through
the wind-tunnel test section, one beam passing through the flow region
under analysis snd the other beam passing through the undisturbed flow in
the test section upstream of the model. The fringe shifts due to density
variations in the boundary layer are eliminated since both beams pass
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through the boundary layer on the test-section walls and are affected
almost equally. The growth of the boundary layer between the two beams
is not compensated by the above arrangement, but the effect is of sec-
ondary importance. A detailed description of the GAICIT interferometer
and a very complete biblicgrephy on interferometer construction is given
in reference 17.

Models

The models were conical-tipped brass cylinders of 20°, 25°, and 30°
semiangle. The base diameters were between 0.30 and 0.50 inch. Thus,
the Reynolds numbers for the tests, with the base diameter of the models
as the reference dimension, varied from 55,000 to 143,000. The tips of
the cones were made as sharp as possible and the maximum tip diameter of
the dullest of the models was approximately 1/3 percent of its base
dismeter. Also, the models were black-nickel plasted to improve the photo-
graphic definition. The angle of attack and angle of yaw were adjusted
to zero by equalizing the pressure on the cone surface gt four annulsr
points.

EXPERIMENTAL TECHNIQUES

Interferometry

An experimental investigation of flow phenomens is facilitated by
the employment of an interferometer to determine the density fields in
gaseous (or liquid) flows. The interferometer technique possesses the
obvious advantage of eliminating the need for placing any type of probe
into a flow region where the presence of the probe may completely alter
the undisturbed flow field. A disadvantage is also present, however,
since the values of density are not lmmedlately aveilable as the test
is in progress. A more serious disadvantage is the fact that the inter-
ferometer integrates the density values on its light paths (see appen-
dix A) and, thus, the measurement of density is not localized but is
influenced by inhomogenelties in the flow which may be well removed
from the points of interest.

Two general types of flow are amensble to interferometric analysis,
nemely, two-dimensionsl and axially symmetric flow. This paper is con-
cerned solely with axlally symmetric flow analysis. A discussion of the
method employed to reduce the finite-fringe interferograms, such as fig-
ure 1, to density distributions may be found in appendix A. The method.
is essentially that outlined in reference 18. An excellent discussion
of axially symmetric datas reduction is given in reference 19 where sev-
ergl references to earlier papers in the fleld will be found.
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These earlier papers are mainly concerned with evaluating the
interferometer-data reduction techniques for axially syrmetric flow by
investigating the flow about cone cylinders at Mach numbers and cone
angles where the Busemann conical solution was known to be vglid. Ref-
erence 20 presents some experimental results in the same general flow
regimes as are lnvestigated in this report.

Sonic-Line Location by Wave Reflection

The location of the sonic line in a meridionsal plane of an axially
symmetric transonic flow can be determined experimentally by at least
three distinet methods. The first method is by static~pressure meas-
urements, the second is by interferometric analysis, and the third is
that of Mach wave reflection from the sonic line. It should be noted
that at the point of reflection the Mach wave will be perpengdicular to
the streamline direction through the sonic line.

To locate the sonic line within the flow about a cone, a small-
diameter probe was placed in the free-stream flow outslde of the cone
shock wave. The probe was in & position such that the probe shock wave
plerced the cone shock wave and entered the flow field about the cone.

The shéck waves formed by the probe closely approximate Mach waves at
large distances from the probe and a typlcal wave reflection is shown

in figure 2. The perturbations in the flow about the cone caused by

the waves do not appreclably affect the position of the sonic line as
shown by figure 3 where a comparison 1s made of the location of the

sonic line as found by interferometric analysis and by the wave-reflection
method. The probe method is much more convenient than the pressure-
megsurement or interferometric method since the phenomenon may be observed
with a schlieren system, so that the result is obtained visually.

Pressure Measurements
The pressure measurements in this investigation were made elther on

a micromsnometer (accuracy of +0.01 millimeter of mercury) Or on a nomo-
graph Mach meter (ref. 21).

EXPERTMENTAL RESULTS AND DISCUSSION
General Flow Characteristics
An analysis of the flow of a compressible fluid about an axially

symmetric finite cone, that 1s, a cone cylinder, indicates that five
distinct regimes of flow are possible. These regimes are given below.
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Regime I.- Regime I is subsonic flow at infinity with a region of
locally supersonic flow downstream of the cone shoulder. A schlieren
photograph of this type of flow is shown in figure 4. It should be noted
that an extremely weak shock wave originates at the cone shoulder and
terminates at the downstream "normel" shock wave. The forked appearance
of the base of the terminsting "normal" shock wave is an illusion caused
by the axial symmetry of the flow. The light rays which pass near the
surface of the body in the region of the rearward branch of the "fork"
also pass through the outer portion of the shock end the spurious rear-
ward branch is caused by the light-ray deflections in the outer portion
of the shock wave. A meridional section of the shock wave actually
includes only the front branch of the fork.

Regime IT.- Regime II is supersonic flow at infinity with a detached
shock wave and subsonic flow between the shock wave and the cone. Fig-
ure 1 is a finite-fringe interferogrem of this type of flow.

, Regime ITT.- Regime III is supersonic flow at infinity with an
attached curved shock wave and subsonic flow between the initial portion
of the shock wave and the cone. A schlieren photogrgph of this flow is
shown in figure 5(a). Taylor and Maccoll's original paper on conical
flow (ref. 13) includes a schlieren photograph of an attached curved
shock.

Regime IV.- Regime IV is supersonic flow at infinity with an
attached shock wave and mixed supersonic and subsonic flow between the
shock wave and the cone. A schllieren photograph of this flow is shown

in figure 5(b).

Regime V.- Reglme V is supersonic flow at infinity with completely
supersonic flow between the attached shock wave and the cone surface.
The Busemann solution applies in this regime and has been verified experi-
mentally in references 13, 1k, 19, and 22.

Local Mach Number Contours

The local Mach number contours in & meridional plene for the flow
about a 25° semiangle cone are shown in figure 6 for flow regimes II, IIT,
end IV. The local Mach number contours for a 30° semiangle cone in
regime IT are shown in figure 7. These data were obtained by interfero-
metric anaslysis as discussed in appendix A.

The local Mach number contours-should be normsl to the cone surface
since the cone surface is a flet boundary and any pressure gradient at
the surface must be parallel to the flat surface. However, near the
shoulder of the cone cylinder the surface is curved by the effect of the
corner expansion on the boundary layer, and thus the local Mach number
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contours are not quite perpendicular to the cone surface immediately
ahead of the shoulder.

Sonic-Iine Location

The location of the sonic line can be determined by interferometric
analysis, but a more useful method, in the present investigation, was the
wave-reflection method. The location of the sonic line in regimes II,
ITI, and IV is discussed below.

Regime II.- Examples of the sonic-line location in regime II are
shown in figures 6(a) and 6(b). The sonic line originates at the cone
shoulder and terminates on the detached shock wave. In figure T it may
be seen that a region of supersonic to subsonic compression exigts on the
outer portion of the sonic line. The sonlc line actually originstes
slightly upstream of the cone shoulder. This effect 1s due to the
rounding of the cone shoulder by the surface boundary layer.

Regime IIT.- Figure 6(c) 1llustrates the case of the flow with a
nearly attached curved shock wave. Again, a small region of supersonic
to subsonic compression is present on the outer portion of the sonic
line. The free-stream Mach number is slightly less than the detach-
ment M, predicted by the exact conical theory. The question of experi-
mental detachment Mach number is discussed below.

Regime IV.- Several examples of the sonic-line location in regime IV
are shown in figures 3, 6(d), and 8. Figure 3 shows the location as
determined by interferometric means and as determined by wave reflection.
The sonic line agalin originates at the corner and now terminates at the
cone tip and not on the shock wave as 1n regimes II and ITI. A shock-
free supersonic-to-subsonic compression occurs on the forward portion of
the sonlc line. The location of the sonic line for a 20° semiangle come
is shown in figure 8. The agreement between the theoretical and experi-
mental location is satisfactory neasr the tip of the cone and for some
distance downstream of the tip.l

The question of smooth shock-free supersonlc-to-subsonic compres-
sion has been the subject of much discussion in recent years. The above
experimental results demonstrate that such a flow is possible. However,
the smooth compression is not of primary importance, but rather the con-
ditions under which it occurs. These conditions are that the sonic sur-
face bounds a zone of subsonic flow completely enclosed by a reglon of
supersonic flow and a solid surface.

The existence of this type of flow 1s indicated by the experimental
results of Taylor and Maccoll (refs. 13 and 14) and was also discussed by
Tsien (ref. 23).
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As an example of non-shock-free supersonic-to-subsonic compression,
consider the flow past a two-dimensional airfoil at high subsonic speeds.
The locsl supersonic zone on the airfoil is terminated by a shock wave
end smooth compression through sonic veloclity does not occur. Im the
two-dimensionsl case, however, the supersonic zone is bounded by a sub-
sonic region and a solid surface. This is the opposite arrangement to
that in the flow sbout a cone, in regime IV, where shock-free supersonic-
to-subsonic compression does occur.

The above considerations illustrate that the existence (or stability)
of shock-free compression through sonic velocity may not be a local phe-
nomenon but may depend on the arrangement of the complete flow field.

Shock-Wave Angle

The angle of the attached shock wave at the nose of the cone was
determined for a 20° and a 25° semiangle cone in flow regimes III, IV,
and V. The values are shown in figure 9. Similar experiments are
reported in references 13 and 1L&. Reference 22 presents dats for one
cone angle at one Mach number in regime III and one Mach number in
regime IV. The agreement between the exact theory and the experimental
values at the cone tip 1s very good even in regimes IIT and IV where the
exact theory is not spplicable for the complete finite cone.

Surface Mach Number Distribution

The distribution of the surface Mach number Mg on a 25° semiangle

cone for various values of M, 1s shown in figure 10 and that on a 20°
semiangle cone, in figure 11. Several characteristics of these distril-
butions are of particular interest.

(1) Surface Mach number near the shoulder deviates from the Busemann
conical values as soon a8 Mg = 1.00 1is attained. Surface Mach number

near the cone tip agrees quite well with the conical wvalues until the
theoretical detachment M, occurs. At the corner Mg should, except

for boundary-layer effects, always be sonic if Mg forward of the
shoulder 1s subsonilc.

(2) As M, approaches 1.00 from the subsonic or from the super-
sonic regimes, Mg at a particular chordwise station approaches a con-
stant value. This behavior implies that
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The same behavior of Mg on two-dimensional sections was noted in
reference 2k, and thus the concept of stationary values of Mg at
Mo = 1.00 is established for two-dimensional and axially symmetric flow.

Since these two cases represent limiting cases of the flow about general
three-~dimensional bodies, the stationary Mg concept can probably be

applied quite generally if sultable care 1is taken in choosing the range
of M, about M, = 1.00 in which the so-called "My freeze" is

applicable.

(3) As M, progresses fram a subsonlc value through M, = 1.00
and on to a value in regime V, the Mg at a particular chordwise sta-

tlion probably varies gquite smoothly with no abrupt variations, even at
attachment of the shock wave, except for a reglon qulte near the tip
where large variastions may occur when the shock wave attaches.

Drag Coefficients

The drag coefficients for the 20° and 25° semiangle cones are shown
in figure 12. The values at M, = 1.00 were determined by extrapolating

the Mg dsta in figures 10 and 11 to M, = 1.00.

Using the concept of stationary values of Mg at M, = 1.00, the
drag-curve slope at M, = 1.00 becomes (see ref. 4 and appendix B)

dac
T - gy - ey O (1)

where CD* is the dreg coefficient at M, = 1.00. The first term

h/(y + 1) of the drag-curve slope 1s derived from the first-order term
of the pressure coefficient while the term [?/(7 + lzICD* represents

the contribution of the second-order terms. The magnitude of the
second-order term [é/(y + lzlcn* is shown by the difference in slope

of the pairs of lines drawn through Cp* in figure 12.

The experimental results also indicate that

aPMg

— =0

2
o™ 1y_=1.00
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This then implies (see appendix B) that

22& _.ley+ b 107+ 6 *
Pl 000 (P+1F (71

and an estimation can then be made of the range sbout M, = 1.00 where
equation (1) is valid.

Shock-Wave Detachment

Conical-flow theory indicates that for a given cone angle of a
semli-infinite cone a certain minimum M, is reached below which a coni-
cal solution is no longer possible. This value of M, 1is defined to be
the shock-wave detachment M,. However, a finite cone introduces a char-
acteristic length into the problem so that curved sttached shock waves,
which would provide the necessary pressure gradient to turn the flow near
the cone tip, may exist at values of M, 2less than the conicel detach-

ment My.

Present experimental results indicate only that shock-wave detach-
ment for a given cone angle does not occur at an M, greater than that
predicted by conical theory. A collection of data from references 22,

25, 26, and 15 is shown in figure 13. The ratio S/d where & is the
center-line distance from the shock wave to the plane of the cone shoulder
and d is the body diemeter at the shoulder, that is, the sonic point,
is seen to approach asymptotically to the value of S/d at attachment.
The asymptotic behavior of G/d complicates the falring of the proper
curve of E/d versus M, particularly in view of the paucity of experi-

mental polnts in the immediate vicinity of shock-wave attachment.

In reference 27 data are presented for the shock-wave detachment
distance of several cone angles at M, = 2.45. A dlscrepancy was found
between the experimental and theoretical values of the cone angle at
vhich shock-wave detachment occurs for a fixed value of M,, detachment
appearing to occur at a cone angle glightly greater than that predicted
by the conlcal theory. This behavior would correspond to shock-wave
detachment for a fixed cone angle occurring at a value of M, less than
the theoretical conical value of M,. Again, however, the discrepancy

may be caused by the manner in which the experimental curve was falred.

Thus, the experimental results gppear to indicate only that shock-
wave detachment for a finite cone occurs at a value of M, either less

than or equal to the value of M, predicted by conical theory but not
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at a larger Mw. The fact that shock-wave detachment does not appear
to occur at a value of M, greater than that predicted by the comical
theory indicates that the presence of a boundary layer on the cone tip
does not affect the conicity of the flow near the cone tip to the extent
of precipitating detachment of the shock wave.

Figure 13 also indlcates that when the shock-wave detachment dis-~
tance 1s large, the position of the shock wave is dependent only on the
diameter of the cone st the shoulder or sonic point and is independent
of the cone angle. When the shock wave is quite near the cone tip, how-
ever, the detachment distance is also dependent on the cone angle. This
manner of behavior of the shock-wave separation distance was discussed
by Busemann (ref. 28) and was shown experimentally for two-dimensional
wedge sections by Griffith (ref. 29).

Transonic Simllarity

The transonic-similarity rules for the drag coefficient and pres-
sure coefficient, as derived in reference 10, camnot be checked by the
experimental results of this report. The derivation assumes that the
cone-gurface boundary condition is the gpproximate tangency condition
which is valid for relatively small sngles. A 20° semiangle cone is
the minimm-angle cone for which detached shock-wave flow can be obtained
in the transonic wind tunnel, and thus the experimental models were 20°,
259, and 30° semiangle cones. The experimental cone angles are much
larger than the cone angles for which the approximate tangency condition
is reasonable, and, therefore, the transonic-gimilerity rules of refer-
ence 10 are not applicable.

THEORETICAL CONSIDERATIONS

At the present time, theoretical solutions have not been found to
describe the flow about a finite cone for the complete Mach number range.
Theoretical solutions are available for only two Mach number regimes,
namely:

(1) Exact conical theory may be applied if the surface Mach number
is greater than sonic T ' ' '

(2) At M, = 1.00, Yoshihars (ref. 11) has calculated the flow about
small-angle cones by a relaxation technique

No solution has been determined if M, 18 less than sonic. How-
ever, Van Dyke's second-order supersonic theory and technique (ref. 30)
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possibly can be applied to the subsonlc case since, if the gppropriate
changes of sign are made in the particular solution found by Ven Dyke

for the supersonic case, the particular solution becomes valid for the
subsonic case.

A solution remains to be found for the regime between My = 1.00
and the value of M, where My becomes equal to 1.00. The problem

would be greatly simplified if the transonic equations could be employed.
To test the feasibility of the epproximations inherent in the trensonic
equations, an aspproximste solution has been found for conical flow about
a semi-infinite cone using the transonic equations. The details of the
solution axre presented in appendix C.

The solution is compared with the exact conical theory in figures 1k
and 15. Figure 14 shows the comparison between the shock-wave angles
predicted by the exact theory and by the transonic approximation. The
surface Mach number comparison is shown in figure 15. From figure 15 1t
can be seen that the transonic approximstion is gquite satisfactory and
is probably better than slender-body cone theory, since slender-body cone
theory does not consider the presence of the conical shock wave. Also,
figures 1% and 15 show the agreement of the cone angle at shock-wave
detschment as found from the transonic solution and from the exact theory.

The above camparison of the exact conical solution and the approxi-
mate solution indicates that the transonic equations contain all the
terms of importence in the exact equations for conical flow about cones,
so that the transonic equations may be employed with confidence in the
range of M, from M, = 1.00 to an M, for which M, = 1.00.

SUMMARY OF RESULTS

The following results were obtained from an investigation of tran-
sonic flow past cone cylinders.

1. The variation of drag coefficient Cp with free-stream Mach
number M, was determined experimentally. The slope of Cp versus Mo
at M, = 1.00 agrees with the theoretical prediction. The deviation
of Cp versus M. from the conical flow value of Cp when Mg < 1.00
is demonstrated.

2. The experimentsl results for the shock-wave angle, sonic-line
location, and surface Mach number in the region near the cone tip indi-
cate that the flow is conlcal near the tip of a finite cone even when
the surface Mach number is less than sonic. The surface Mach numbers
for the rest of the cone deviste from the exact conical values when
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Mg < 1.00. Also, a case of shock-free supersonic-to-subsonic compression
1s demonstrated experimeritelly. .

3. An approximate solution for transonic conlcal flow has been
developed and the agreement with the exact conical theory indicates that
the axlally symmetric transonic equations retain the lmportant features
of the exact equations.

4. Present experimental values of the detachment distance of a
shock wave from a flnite cone tip do not demonstrate agreement with the
detachment Mach number predicted by conical theory for a semi-infinite
cone and the question of shock-wave detachment from a finite cone remains
undecided.

California Institute of Technology,
Pasadena, Calif., April 15, 1953.
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APPENDIX A

REDUCTION OF INTERFEROMETER DATA

An interferometer determines the advancement or retardation of a
light wave in a medium with respect to a coherent light wave in a ref-
erence medium. Since the wave velocities are s function of the indices
of refraction of the respective mediums and consequently of the densi- -
ties of the mediums, it mey be shown that

= -;;E(z) - plzldl (A1)
where
p(2) density of undetermined medium
PR : density of reference medium
1 path length
K Gladstone-Dale constant
Ao wave length in vacuum of light employed
38 fringe shift; in case of finlte-fringe interferograms this

is ratio of displacement of a fringe to interval between
undisturbed fringes

In equation (Al) it has been assumed that the light beams traverse
identical geometrical paths, so that refraction, if present, is neglected.
Also, the relationship between the index of refraction n and density is
assumed to be

=1+ Kp (A2)
If n=14+q where a << 1, equation (A2) is obtained by linear-
izing the Lorentz law.

For the axlally symmetric case, the fringe shift for a light path
perpendicular to the axls of symmetry becomes

s(y) = f E(r) - pR]r =

) 1/2




18 NACA TN 3213

where 1r 1s the radial distance from the axis of symmetry to a point on
the light path end y is the perpendicular distance from the axis of
symuetry to the light path.

In the present investigation, the density field was bounded by a
shock wave at a distance yg; from the axis and the reference density

was the free-stream density P 3 thus,

s(y) = gﬁl/“ys [o) - o]z &= (43)
Y

Weyl (ref. 31) introduced the assumption that S(y) is a linear func-

tion of y2 in a smell interval of y. The validity of this assumptlon
for the present lnvestigation 1ls indicated by the parabolic nature of
the typical fringe-shift curves shown in figure 16. If the substitutions

v = r?
as
ug = ¥
are made, equation (A3) becomes
8(w) =7\%LHS _o(;_‘)r_;—z;]dv (k)

This is analogous to the solution of Abel's problem. The solution of
equation (A4) for p is

Ug
p(w) - p_ = - %gj; --—-——-(dsi L__/(_i.u‘)r,du (a5)

where w = r2. A camplete proof of the solution may be found in refer-

ence 19,
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If the region of integration in equation (45) is divided into equal
increments in r of width b,

ri=ib

where 1 is an integer. A numericsal evaluation of equation (A5) is then

o R e .
where
rg = Nb
and

Wk + 1)2 - 12 - |2 - 12

Ayy =
kel 2k + 1

The above solution of the problem is essentlally that of reference 18
and a table of Apy for 50 intervals will be found in reference 18.

Fram the density ratio determined by equation (A6) the local Mach
number may be computed. An gpproximste correction to the local stagna-
tion pressure po' downstream of the shock wave was made by assuming

that on the cone surface po’ was determined by the nose shock-wave
angle and at g given chordwise station po‘ varied linearly with the

value on the shock wave at the given station. If the approximste stream-
lines are calculated, as in reference 20, a more refined correction is
obtained. From the experimental values of the local Mach number a topo-
grephic map was plotted, and from this msp the desired Mach number con-
tours are found.

Conical Fields

If it is desired to determine whether or not a given axially sym-
metric field is conical, & simple test can be made. Returning to equa-
tion (A3) it is assumed that

= p(n)
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where 7 = r/x and x is the axial distance from the conical origin.
Then equation (A3) becomes

s(y) _ g_iifns E’(ﬂ) - pog'q an

x A
oYy (ne - 2)1/2
1

where g is the tangent of the shock-wave angle and nl = y/x. Thus,
if the field 1s truly conlcal,

) Y

end a plot of S(y)/x versus y/x for various values of x will yield
a group of coincident curves. Examples of this technique are shown in
references 19 and 20. It is interesting to note that in reference 20
figure 6(b) indicates conical flow near a cone tip for flow regime IV,
that is, a 35C semlangle cone at M, = 1.87, using the above technique.

Subsidiary Considerations

Model size.- From equation (A3) it 1s evident that the fringe sghift
at g particular chordwise and radisl station is a linear functlon of the
model size for fixed values of density. Thus the model should be asg
lerge as is compatible with the test-section dimensions with regerd to
blocking and so forth.

Finite fringe spacing.- The fringe spacing in the undisturbed field
mugt be such that a sufficient number of data points may be determined
between the shock wave and the cone surface at a particplar chordwise
station. However, for a given fringe shift S +the displacement of the
fringe is proportional to the undisturbed fringe spacing, and the accur-
acy of the fringe data will be improved by Increasing the undisturbed
spacing. A comproamise must be effected between the desire for many
fringe shift polnts at a given chordwilise station and the accurascy of the
individual points. In the present investigation, this compromise pre-
cluded a study by interferometry of the flow properties in the immedlate
vicinity of the cone tip when the shock wave was attached.

Accuracy.- The accuracy of the interferometric method is affected
by refraction, inhomogenelties in the reference flow, the numerical
approximation, and so forth. An estimate of the accuracy can be obtailned
by noting the comparison of interferometer date and shock-reflection data
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in figure 3 and the values of local Mach number behind the shock wave
indicated in figures 6 and 7.

Comprehensive discussions of the accuracy of the method may be
found in references 18 and 18. '



22 NACA TN 3213
APPENDIX B
VARTATION OF PRESSURE AND DRAG COEFFICIENTS NEAR M, = 1.00
The pressure coefficient
Cp = 25 (%E - 1)
M T

where Pg 1s the surface static pressure and P, is the free-stream
static pressure may, in transonic flow, be written as

3 7/(7-1)
o |t + z 2 = P
Cp = = T -1 (B1)
7Moo l+z—-——M32

2

where Mg 1s the surface Mach number. In equation (B1) it has been
egasumed that

Ja's)
o 0 - 33

that is, the stagnation pressure loss across any shock waves may be
neglected.

Defining ¢ and ¢t as

t = M2
g = M7
Bquation (Bl) becomes
Cp = £(L,8) = 2 -1 (B2)
4%\ A ¢
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For a fixed body geometry, Mg is a function of M, only,
therefore

g = £(L)

Thus, the first and second total derivatives of. Cp with respect to ¢{
are

ac

E‘gg = g + £ ZE—C (B3)
and
afc a at\? a2t

In general, dt/dt and dag/dga are not known; however, an argument
presented by Liepmann and Bryson (ref. 24) shows that, for { = 1.00,
dg/dg = 0. The same argument, namely, that M, has a statlonary value

at My = 1.00, cannot be used to evaluste d?g/&;z. However, an inspec-
tion of the experimental data (see figs. 10 and 11) indicates that the
curve of My versus M, has an inflection point at M, = 1.00 and,

thus, @2/at? =0 at ¢ = 1.00.

Using equstions (B3) and (B4) and the above argument, the deriva-
tives of cP become .
acp\* %
—=] =7f
at £

d2 *
¥*
d—;’i = Teg

where ( )* indicates evaluation at § = 1.00, that is, at M, = 1.00.
The derivatives of CP with respect to M, are then

ac *
G - =

*
(22&) = ’-l-fgg* + 2f€*

dmaa



2k NACA TN 3213

The partisl derivatiyes f;; and fC may be calculated from equa-
tion (B2) and thus

*
de) Y 2
Qﬁﬁ; Ty +1 y+1 Cp* (B3)
*
(dgcﬁ) __ley 4+ b L, 107 + 6 o* : (B6)
2 (7 +1)2 (r+1)2 °

The fore drag coefficient of a finite cone is glven by

1
Cp =\/:) Cp(a.) da

where o = (r/rb)z,' r 1s the local cone radius, and 1ry 1s the cone
base radius. Using equations (B5) and (B6), the derivatives of Cp are

*
ac
D 4 2
D = - Cpy* B
Cﬂ%) y+1 9y+1 D (87)
and

d%cq * 2y + 4 10y + 6
———-2 = = 5 + > CD* (38)
Mo (y + 1) (y + 1)

A comparison of equation (B7) and experimental data is shown in
figure 12. Equations (B5) and (B7) were given previously by Bryson
ref. 4).

It should be noted that the first term 4/(y + 1) of equation (B5)
may be derived from the linearized transonic Cp (ref. 1) which is

w2 - m2
(y + 1)

Cp =2 (89)

-
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The second term -[é/(? + 1i]cp* of eqﬁation (B5) is then of the nature
*
of a second-order correction term. However, if dch /dMooa) is com-

puted from equation (B9), the result does not agree with the first term
of equation (B6) and is, in fact, of opposite sign.



26 NACA TN 3213
APPENDIX C
TRANSONIC APPROXIMATION FOR CONICAL FLOW
In discussing axislly symmetric transonic flow, the following

approximations to the exact equations and boundary conditions are employed.

If q, 1s the velocity in the axial or X-direction and q,. 1s the
veloclity in the radial or r-direction it is assumed that

U =+ Gy

A = ¢r

where a¥ is the velocity of sound at M, = 1.00, ¢ is the perturba-

tion potential, and §,, @.<< a¥. Then, defining

7y + 1
a¥ ¢x

_r+1
a¥* ¢r

the continuity equetion is approximsted by
Uy, - Vp - %-v =0 (C1)
and the condition of lrrotationality beccmes'
Up - v =0 (c2)
The exect tangency condition on the body surface is replaced by

vo = (7 +1) tan 6 (c3)
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where v, 1is v on the surface of the body and 6 is the inclination

angle of the body surface. The above relatlons are derived in greater
detail in reference 9.

To test the feasibility of the spproximetiong inherent in equa-
tions (Cl), (C2), and (C3) an approximate solution for the flow about
a semi-infinite cone will be developed. This approximstion will then
be compared with the Busemamn solution of the exact equations.

Conical Solution

Agsuming that u and v are functions of o where

equations (Cl) and (C2) become
Wiy + OVg - v =0 (c1a)
Uy + Vg = O (caa)
A sclution of the form
u = £(v) (ck)

will be sought. From equation (Ch)

du _ du dv

do dv do
but from equation (C2a)

gy_ = =0 d'—“"L

do do
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Therefore

-d‘—u = —; -
dv o ()
The relationship in equation (C5) is exact (see ref. 32).
Differentiating equation (C5) with respect to o ylelds
I (c6)
do 02 d.2u
ave
and therefore
do
o3 &fu
a

Substituting equations (C5), (C6), and (C7) into equation (Cla), the
result is

3
%y . du _ ., [aw .
v ) + Sy = u(——dv) (c8)

The following conditions are imposed on equation (C8).

(a) At the shock wave: If uy and vy are the values of u. and v
at the shock wave, then, from the transonic-shock polar relation,

Wy +
Ve = - ug) 2 (c9)
where
U = M2 - 1
The shock-wave angle B 1s given by
Vg

A
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hence, from equation (C5),

du| __ U - Ys '
av| v (c10)

(b) On the Cone Surface: The tangency condition must be satisfied,
hence

Vo = (7 + 1) tan 6 (c11)

where vy 1is Vv on the cone surface and 6 is the cone semiangle.
From equation (C5)

.d.'E = ~tan © (012 )
av o

An exact solution of equation (C8) has not been found. However, if the
right-hand side of equation (c8) is assumed to be small, an iteration
solution may be found.

First Approximation

As g first approximation to the solution, set the right-hand side
of equation (C8) equal to zero; that is,

u = A logg Bv (cik)

Applying conditions (C9) and (C10) to this solution, equation (C1h4)
becomes

u=ug - ng - us) log, %é (c15)
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Second Approximation

As a second approximation to the solution of equation (C8), the
right-hand side of equation (C8) is assumed to be given with sufficient
accuracy by equation (C15). Hence

E-(V d_u) __Ysg (uoa - u’SlB + Luw 'BuS)u- loge vl ~ (c16)
8

dv dv, o v

The solution of equation (Cl6) is

- ug)? '
u=-(-u°°1+_v2l1§)_-lzu6+ (uw-us) + (Um-lf.s) loge%]+ClogeDv

(c17)

Applying conditions (C9) and (C10) to this solution, equation (CLT)
becomes

- ug)?
u=..(u_°‘r_v2--_LEus+ (U - Ug) + (U - ug) logegt:l-

(1o + 5ug) (U - ug) log, Y - U (U0 - Stg) (c18)
g(uw+us) € Vs 2(uoo+us)

The values of ug and vg appearing in equation (C18) are not

independent of the cone semiangle 6. Applylng condition (Cl2) to
equation (C18) and solving for vg, the result is

[(r + 1) tan 6]® (us + 5ug)
(0 + g) (%o '%)5

loge Vg = logg (7 + 1) tan 6 +

ug ;L_> _2(y + 1)3 tan'e (C19)
<uco - Ug 2 (Um _ us) L
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The transonic-shock polar relation also must be satisfled, hence

Vg = (um - us) V—;uﬁ (c20)

Because of the nature of equation (C19), explicit solutions of egqua-
tions (C19) and (C20) for ug and vy in terms of u, and 6 have

not been found. However, a solution may be found graphically.

The values of ug and vg thus determined for a given value of ©

and u, may be introduced into equation (C18). If the value of u on
the surface ug 1s desired, then substitution of .

Vv=vy={(y+1) tan ©

in equation (C18) ylelds u,.

It should be noted that, for a given value of 0 and uy, two sets
of values for ug and vg are found. These. correspond to the "strong"

and "weak" shock waves.

Comparison of Second Approximation and Busemenn Conieal Solution

Wave angle.- The wave angle f 1is determined by the values of ug

end vg since

cOtB:-vs_-_
Yoo = Ug
The degree of agreement is apparent in figure 1h.

Surface Mach number.- In terms of u, and v,, the surface Mach
number is

M2 - 2 _ L (ca1)

where
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The.usual transonic approximation reduces equation (C2Ll) to
Mg = 1 + ug (c22)

equation (C21) is shown in figure 15. The agreement with the exact
theory is quite satisfactory.

Apple curve.- Two sets of values of uy; and vy will satisfy equa-

tions (C19) and (C20). The two solutions correspond to the "strong" and

"weak" shock-wave solutions predicted by Busemann. If the values of uj

and vy for all possible cone angles and for both types of solution are

plotted in the hodograph, the resultaent curve is Busemann's "apple" curve.
The apple curve found in the second approximation is shown in figure 17.
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o L-84893
Figure 1.- Finite-fringe interferogram for 30~ semiengle cone cylinder.
Mo = 1.280.
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Figure 2.- Wave reflection from sonic line for 20° semlangle cone cylinder.
My, = 1.297.



38 NACA TN 3213

o SHOCK REFLECTION DAT,

Me= .40l g
e PROBE DATA, %
M= 1.395 /
5°
— — TAYLOR-MACCOLL o
AT o —2.0

r/rb

.0

7

Figure 5'.:- Sonic-line location for 25° semlangle cone cylinder.
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(a) M, = 1.328.

Figure 5.- 25° semlangle cone cylinder.
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Figure 6.- Mach number fileld for 25° semiangle cone cylinder.
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(b) Mw = 1.253.

Figure 6.- Continued.
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Figure 6.- Continued.
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Figure 6.~ Concluded.
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Figure 7.- Mach number fileld for 300 semiangle cone cylinder.
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Figure 8.- Sonic-line _l'écation by shock reflection for 20° semiangle
cone cylinder.
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Figure 9.- Nose wave angle.
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